Assignment 4.

Polynomials, exponential, related functions.

This assignment is due Wednesday, Feb 13. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

(1) (a) Prove that $z = z_0$ is a zero of multiplicity k of the polynomial f(z) if and only if

$$f(z_0) = f'(z_0) = \dots = f^{(k-1)}(z_0) = 0, \quad f^{(k)} \neq 0.$$

(*Hint*: It was proved in class that a zero $z = z_0$ of f(z) has multiplicity k iff it is of multiplicity k-1 as a zero of f'(z). Use this.)

- (b) Prove that if $z_0 = a + bi$ is a zero of multiplicity k of the polynomial f(z) with real coefficients, then $\overline{z_0} = a - bi$ is also a zero of multiplicity k of f(z). (Hint: Conjugate the formula in the item 1a above.)
- (c) Prove that every polynomial with real coefficients decomposes as a product of linear and quadratic polynomials with real coefficients. (*Hint*: Look at $(z-z_0)(z-\overline{z_0})$.)

COMMENT. This is one of many examples where the fact purely about real numbers is proved using complex numbers.

- (d) Decompose x^4+1 in a product of two polynomials with real coefficients.
- (2) Give another proof of existence and uniqueness of the exponential function (Theorem 10 in Sec. 4.2 of lecture notes), following the steps below:
 - (a) Prove that f'(0) = 1. (*Hint:* Argue why the limit $\lim_{\Delta z \to 0} \frac{f(\Delta z) f(0)}{\Delta z}$ must be the same as $\lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x}$, $x \in \mathbb{R}$.)
 (b) Prove that f'(z) = f(z) for all $z \in \mathbb{C}$. (*Hint*: Use the limit of ratios
 - definition of derivative and the result above.)
 - (c) Treating the resulting differential equation f' = f, f(0) = f'(0) = 1as a system of real-number differential equations, prove that the only complex differentiable function f that satisfies it is $f(z) = e^x(\cos y +$ $i\sin y$). (*Hint:* For example, if f=u+iv, you get $f'=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}$, so $u=\frac{\partial u}{\partial x}$ and $v=\frac{\partial v}{\partial x}$. Don't forget Cauchy–Riemann equations.)
- (3) It is known from calculus that $\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x$ $(x\in\mathbb{R})$. Follow the steps below to prove that $\lim_{n\to\infty} (1+\frac{z}{n})^n = e^z$ for any $z\in\mathbb{C}$.

 (a) Fix a complex number z. Denote $z_n = (1+\frac{z}{n})^n$. Find $\lim_{n\to\infty} |z_n|$.

Hint: Note that $|z_n| = |1 + \frac{x}{n} + i\frac{y}{n}|^n = = \left((1 + \frac{x}{n})^2 + \frac{y^2}{n^2}\right)^{n/2}$. Argue that you can discard terms with $1/n^2$; for example, by showing that

the limit $\lim_{n\to\infty} \frac{\left(\left(1+\frac{x}{n}\right)^2+\frac{y^2}{n^2}\right)^{n/2}}{\left(1+\frac{2x}{n}\right)^{n/2}}$ is equal to 1. Find $\lim_{n\to\infty} \Delta_{RG} \sim \frac{\left(1+\frac{2x}{n}\right)^{n/2}}{\left(1+\frac{2x}{n}\right)^{n/2}}$

(b) Find $\lim_{n\to\infty} \operatorname{Arg} z_n$. (In particular, pick appropriate values of Arg for each n so that the limit exists.)

each n so that the limit exists.)

Hint: Show that $n \arctan \frac{y/n}{1+(x/n)} \in \operatorname{Arg} z_n$. Argue that you can replace arctan with its argument as $n \to \infty$; for example, by showing that $\lim_{n \to \infty} \frac{\arctan \frac{y/n}{1+(x/n)}}{\frac{y/n}{1+(x/n)}} = 1.$ (c) Combine results of (a) and (b) to get $\lim_{n \to \infty} z_n$.

$$\lim_{n \to \infty} \frac{\arctan \frac{y/n}{1 + (x/n)}}{\frac{y/n}{1 + (x/n)}} = 1$$

(4) (a) (Logarithmic spiral.) Find and sketch the image of a straight line

$$z = (1 + i\alpha)t + ib, \quad -\infty < t < +\infty,$$

 $\alpha, b \in \mathbb{R}$, $\alpha \neq 0$, under the map $w = e^z$. Eliminate t in the answer to get an equation in polar coordinates. (This straight line has slope α (meaning it intersects x-axis at the angle $\arctan \alpha$) and intersects y-axis at the point ib.)

(*Hint:* After eliminating t, the answer should be $r=ce^{\varphi/\alpha}$, where $c=e^{-b/\alpha}$. This curve is called a *logarithmic spiral*.)

- (b) Use conformity of $w = e^z$ to find the angle at which logarithmic spiral intersects rays emanating from the origin.
- (c) Given $\alpha \in \mathbb{R}$, find the condition on real numbers c, c' > 0 for the spirals $r = ce^{\varphi/\alpha}$ and $r = c'e^{\varphi/\alpha}$ to be the same (as sets on a plane). Comment. In other words, logarithmic spiral is *self-similar*.
- (d) Find and sketch the image under $w=e^z$ of the slanted strip S with sides

$$y = k(x - a_1), \quad y = k(x - a_2) \qquad (k, a_1, a_2 \in \mathbb{R}; \ k \neq 0).$$

(Hint: Convert equations of straight lines to the form used in item 4a.)

- (e) Find the condition on k, a_1, a_2 for the map $\exp: S \to \mathbb{C}$ to be injective, (i) using item 4c above, (ii) using periodicity of exp.
- (5) (a) Find $(\cos z)'$, $(\sin z)'$, $(\sinh z)'$, $(\cosh z)'$. (Probably, the quickest way is to express these functions through exp.)
 - (b) Find all complex solutions of equations $\cos z = 0$, $\sin z = 0$, $\cosh z = 0$, $\sinh z = 0$.
 - (c) Using formulas for $\cos(z_1 + z_2)$ and $\sin(z_1 + z_2)$, express $|\cos z| = |\cos(x + iy)|$ and $|\sin z| = |\sin(x + iy)|$ through \sin, \cos, \sinh, \cosh of x and y.